MINITAB 15 MANUAL FOR MBA 6120

Created by: Liz Ames, Chris Swanton \& Norm Chervany Carlson School of Management

Full-time MBA Program

Introduction

Welcome to the exciting world of Minitab! This introduction will provide a brief description of how the manual is organized. An outline is provided so that you can easily find what function you are looking for. The manual will assist you with any Minitab use needed to MBA 6120.

The manual describes functions in Minitab by walking you through the commands and providing screen shots. Also, using specific data, an example is provided for each function. Please see the Appendix for a description of each data set. The commands are easy to recognize as they are in regular bold font and always start off by clicking one of the menu bar options. Here is what the menu bar (located at the top of the Minitab screen) looks like:

Throughout the manual, after the commands are given, a screenshot of the window you will see appear is shown. Then after all the commands and screenshots are provided, the Minitab output for the example is shown. Also, with many of the functions, you are given different options of what data you want displayed or how you want the data displayed. For example, as you will see with many of the screenshots, buttons like these appear,

and you can, if desired, click on them to edit the function. Throughout the manual, these buttons will be designated with italicized bold letters. However, it is important to note that because these buttons appear on so many different functions, once one of the buttons is explained, it most likely will not be explained again under a different function. Many of the key buttons are shown when the histogram is explained (particularly the buttons shown above), so please reference that section. Another option that is important but is only shown once in the histogram section is the option to edit the graph after it is displayed by double-clicking on different parts of the output graph.

HELP. If you need further assistance or would like more explanation or examples, Minitab has a help function. If you click on the menu bar Help, you have these options:

Also, as you will see with the screen shots, the pop-up windows show a help button in the lower, left-hand side.

If you click one that Help button, you are given the option to search, but are also given explanations and examples of the function that is currently in use. Here are some of the options you can click on to get more information on your function.
maintopic how to example data see also

OUTLINE

Section

Page
I. Basic Functions 1
a) Entering/Transferring Data 1
b) Specifying Data Type 1
i) Change columns from text to numeric 2
ii) Choose Data Type when Transferring Data ${ }^{1}$ 4
c) Saving ${ }^{\text {ii }}$ 5
d) Printing 7
II. Manipulating Data 8
a) Sort 8
b) Rank 9
c) Delete Rows 10
d) Erase Variables 10
e) Code 11
f) Calculator 14
g) Standardize 16
h) Subset Worksheet ${ }^{\mathrm{iii}}$ 17
i) Split Worksheet 19
j) Merge Worksheet ${ }^{\text {iv }}$ 20
k) Deleting Observations with Missing Data 23
III. Descriptive Statistics 32
a) Descriptive Statistics for one variable ${ }^{\mathrm{v}}$ 32
b) Descriptive statistics for one variable, grouped by a second variable 34
c) Store Descriptive Statistics ${ }^{\text {vi }}$ 35
d) Column Statistics 37
e) Row Statistics 37
IV. Graphs 39
a) Histogram ${ }^{\text {vii }}$ 39
b) Dotplot 53
c) Box-and-Whisker Plot (Boxplot) 54
d) Probability Plot 56
e) Graphical Summary 58
f) Bar Chart 60
i) Bars representing counts of unique values ${ }^{\text {viii }}$ 60
ii) Bars representing a function of a variable 63
iii) Bars representing values from a table 66
g) Pie Chart. 68
i) Chart raw data ${ }^{\text {ix }}$ 68
ii) Chart values from a table 69
V. Estimation and Testing 71
a) $1 Z^{x}$ 71
b) 1 t 72
c) $2 t^{x i}$ 74
d) $1 \mathrm{P}^{\mathrm{xii}}$ 76
e) 2 P 77
f) Normality Test 78
VI. Regression 81
a) Finding the Best Regression Model Using All Independent Variables ${ }^{\text {xiii }}$ 81
b) Identifying Relevant Independent Variables for Best Regression Model ${ }^{\text {xiv }}$ 85
c) Correlation 87
d) Scatterplot ${ }^{\mathrm{xv}}$ 89
VII. Appendix 94
a) Dell Data 94
b) Auction Data 95
c) Student Data 96
d) Student (2) Data 96

[^0]
I. Basic Functions

a) Entering/Transferring Data

To start a project in Minitab, data can be entered into the worksheet directly or transferred from an Excel file using copy and paste. Many actions in the worksheet are similar to Excel (e.g. Inserting/deleting rows/columns, copy and paste, etc.), however, Minitab worksheets do not accept formulas. You can also transfer data directly from Excel by going to File \rightarrow Open Worksheet

Before clicking Open, you will need to specify: (1) where the file is located using the 'Look in:' drop down menu and (2) the type of file using the 'Files of type:' drop down window.

In this manual, the Dell Data, Auction Data, Student Data, and Student (2) Data will be used as examples. The original problem statements and data for each example are contained in the Appendix. You can copy and paste the data from the Appendix into Minitab if desired.

b) Specifying Data Type

Minitab handles numeric data, text data, and date/time data. When transferring data into Minitab, it is assumed that the first row of the file contains the column names. When data is typed or transferred, Minitab decides which type of column it is, depending on the data. In the Data windows and Columns folder, Minitab labels text columns with T and date/time columns with D; numeric columns are not labeled. Sometimes Minitab sets a column as text when you want it to be numeric, and vice versa. If columns are incorrectly labeled as text, you will need to change the column to numeric in order to perform many of the functions.
i) Change columns from text to numeric

In this example, we want to import the Auction Data, but let's say the top of the excel spreadsheet looked like this:

To transfer the file to Minitab, you would go to File \rightarrow Open Worksheet \rightarrow (find your file under 'Look in') Open. In Minitab, your screen would look like this:

Because the columns are labeled with a " T ", we know that Minitab interpreted this file as text instead of numeric. It did this because there was text in a row besides the first row. In this situation, you need to delete the first two rows and cut and paste row 3 into the heading row. Then highlight the three columns, go to Data \rightarrow Change Data Type \rightarrow Text to Numeric \rightarrow

Then this screen will appear. Double-click on the columns you want to change under Change text columns: \rightarrow Double-click on the columns where you want to store the changed data under Store numeric columns in: \rightarrow OK.

The revised numeric data will now be shown:

EMINITAB - Untitled - [Sheet1 $\#$ - ${ }^{\text {a }}$]				
匋 File Edit Data Calc Stat Graph Editor Iools				
\downarrow	C1	C2	C3	C
	Auc Price	Age	No. of Bidders	
1	1235	127	13	
2	1080	115	12	
3	845	127	7	
4	1522	150	9	
5	1047	156	6	
6	1979	182	11	
7	1822	156	12	
8	1253	132	10	
-	1297	137	9	
18				

ii) Choose Data Type when Transferring Data

Here is another way to ensure your data is specified as numeric. Go to File \rightarrow Open Worksheet \rightarrow (find your file under 'Look in') Click Preview \rightarrow

As you can see below, you can choose the data type for each column by clicking on the drop

Make the appropriate changes and click OK.

c) Saving

To save your work in Minitab, you can choose from three options: Saving the worksheet, saving the graph, and saving the project. Saving the project is recommended because it saves everything associated with the project: the worksheet (data), graphs, and the session window (displays history). To do this, go to File \rightarrow Save Project As

Before clicking Save, you will need to specify: (1) where you want to save the project using 'Save in:' drop down menu and (2) the name of the file using the 'File name:' drop down window. Using the Description button, you can provide details describing the project being saved.

d) Printing

To print, select the worksheet, graph, or session to be printed. Then go to File \rightarrow Print
Worksheet, or, File \rightarrow Print Graph, or, File \rightarrow Print Session, depending on what window is being printed.

If you are printing a worksheet, you see an additional screen before the one shown above. This screen gives you some options on how you want the worksheet to be printed.

You can also copy and paste what you want to print into other programs, such as Word, and print from there.

II. Manipulating Data

a) Sort

You can sort one or more columns of data according to values in the associated column(s) you select. Sorting alphabetizes or numerically orders the data and carries along the associated columns. You can sort in ascending or descending order, and you can specify whether the sorted data should be stored in the original columns, other columns you specify, or in a new worksheet.

Data \rightarrow Sort \rightarrow Double-click on appropriate variables for Sort columns and By column \rightarrow Click on appropriate selection under Store sorted data in $\boldsymbol{\rightarrow} \mathbf{O K}$.

By making the choices shown above, the Dell Data will have the Rates of Return sorted in descending order by the Date in the original columns.

Here is a glimpse of the first 8 rows (there are really 60 rows) of the worksheet:

Date	Rates of Return
31-Dec-98	0.2035
30-Nov-98	-0.0716
30-Oct-98	-0.0038
30-Sep-98	0.315
31-Aug-98	-0.0791
31-Jul-98	0.17
30-Jun-98	0.1263
29-May-98	0.0205

b) Rank

You can assign rank scores to values in a column: 1 to the smallest value in the column, 2 to the next smallest, and so on. Ties are assigned the average rank for that value. Missing values are left as missing

Data \rightarrow Rank \rightarrow Double-click on appropriate variable in Rank data in (For Dell data, double-click on Rates of Return) \rightarrow Type in name of column heading in Store ranks in (Type in Rank) $\rightarrow \mathbf{O K}$.

Here is a glimpse of the same first 10 rows as the Sort example:

Date 31-Dec-98	Rates of Return 0.2035	Rank
30-Nov-98	-0.0716	47
30-Oct-98	-0.0038	9
30-Sep-98	0.315	56
31-Aug-98	-0.0791	7
31-Jul-98	0.17	40
30-Jun-98	0.1263	35
29-May-98	0.0205	22
30-Apr-98	0.1919	45
31-Mar-98	-0.0313	15

c) Delete Rows

You can delete specified rows from columns in the worksheet and move the remaining rows up.

Data \rightarrow Delete Rows \rightarrow Enter which rows you want deleted under Delete rows (For Dell Data, type in 1:38 10 to delete rows $1,2,3,8,10) \rightarrow$ Double-click on appropriate column names under From columns (Double-click on Date, Rates of Return, and Rank to delete rows from all three columns) $\rightarrow \mathbf{O K}$.

Here is a glimpse of the five rows that are left from the 10 shown in previous Rank example:

Date	Rates of Return	Rank
30-Sep-98	0.315	56
31-Aug-98	-0.0791	7
31-Jul-98	0.17	40
30-Jun-98	0.1263	35
30-Apr-98	0.1919	45

Note: You can also delete rows in Minitab the same way as you would in Excel.

d) Erase Variables

You can erase any combination of columns, constants, and matrices (including their names).
Data \rightarrow Erase Variables \rightarrow Double-click on what you want to erase (For Dell Data, doubleclick on Rank column that was added previously) \rightarrow OK.

Here is a glimpse of what is left of five rows shown in the Previous Delete example:

Date	Rates of Return
30-Sep-98	0.315
31-Aug-98	-0.0791
31-Jul-98	0.17
30-Jun-98	0.1263
30-Apr-98	0.1919

Note: You can also delete columns in Minitab the same way as you would in Excel.
e) Code

Use Code to change a value or set of values to new values.
Data \rightarrow Code \rightarrow This screen will appear:

As you can see from this picture, there are many options to choose from at this point. Only an example of Numeric to Text will be shown here, but use this as a reference for other choices since the format of each one is essentially the same. Below are some examples of when you might want to use the various code commands.

Here are some examples of when you might use the various code commands.
Here are some examples of when you might use the various code commands.
Use... To code...

Numeric to	- Test scores from 91 through 100 to a 4 (grade of A),
Numeric	from 81 through 90 to a 3 (grade of B), from 71 through 80
to a 2 (grade of C), from 61 through 70 to a 1 (grade of D),	
	and 60 or below to a 0 (grade of F)

Numeric to Text Test scores from 91 through 100 to an A, from 81 through 90 to a B, from 71 through 80 to a C, from 61 through 70 to a D , and 60 or below to an F .

Numeric to
People's ID numbers to their birthdays; for example, 45234
Date/Time
to $11 / 15 / 75$; 45235 to $12 / 4 / 65$; etc.
Text to Text Tennessee to TN, North Carolina to NC, Alabama to AL, Georgia to GA.

Text to Numeric The letter grade A to a 4, B to a 3, C to a 2 , D to a 1 , and F to a 0 .

Text to Month names to dates. For example, code January to
Date/Time 1/1/02, February to 02/01/02, etc.
Date/Time to All dates in January 2002 to January 1, 2002.
Date/Time
Date/Time to
Any date that falls between January and March to a 1 for Numeric the first quarter.

Date/Time to Any date that falls in January to "January." Text

Ok, now for the example:
Data \rightarrow Code \rightarrow Numeric to Text \rightarrow Double-click on variable you want to code (For Auction Data, double-click on Age) \rightarrow Type name of new column in Into Columns box (Type in Clocks) \rightarrow Type in values or range of values you want to change in Original values box (Type 100:150 in first rows and $151: 200$) \rightarrow Type the new value with which you want to replace each original value in the New box (Type New in the first row and Old in the second row) $\rightarrow \mathbf{O K}$.

Here are the first ten rows of the data that is displayed:

Auc Price	Age	No. of Bidders	Clocks
1235	127	13	New
1080	115	12	New
845	127	7	New
1522	150	9	New
1047	156	6	Old
1979	182	11	Old
1822	156	12	Old
1253	132	10	New
1297	137	9	New
946	113	9	New

As you can see, the word New is associated with ages 100-150 and Old is associated with ages 151-200.

f) Calculator

Use the Calculator to do arithmetic operations, comparison operations, logical operations, functions, and column operations. Expressions may include columns, stored constants, numbers, and text, but not matrices.

Note: You cannot type formulas in the cells as you would in Excel.
Calc \rightarrow Calculator \rightarrow Type in name of column heading (For Auction Data, type in Mean) \rightarrow Enter the mathematical operation you want Minitab to perform, selecting variables, buttons, and functions to build your expression (For this example, double-click on mean under the Functions dropdown box, then double-click on Age) $\rightarrow \mathbf{O K}$.

Here are the first few rows of the data displayed:

Auc Price	Age	No. of Bidders	Mean
1235	127	13	144.938
1080	115	12	
845	127	7	

Here is another example of an expression you can do. Let's say that we discovered that the grandfather clock ages were underestimated by 5 years. Thus, to add 5 years to each age, use this expression:

Here are the first few rows of the data displayed:

Auc Price	Age	No. of Bidders	Revised Age
1235	127	13	132
1080	115	12	120
845	127	7	132
1522	150	9	155
1047	156	6	161

g) Standardize

The Standardize function centers and scales columns of data. Standardization is useful because it allows you to transform values into comparable units. For example, if you click on Subtract mean and divide by std. dev., the output column will tell you how many standard deviations the value is from the mean.

For the Auction Data, we can see how far the age of each clock is from the mean (in years) by:
Calc \rightarrow Standardize \rightarrow Double-click on the column you want to standardize (Double-click on Age) \rightarrow Type in name of new column under Store results in (Type in Standard) \rightarrow Click in appropriate circle (Click by Subtract mean) $\rightarrow \mathbf{O K}$.

Here are the first five rows of data displayed:

Auc Price	Age	No. of Bidders	Standard
1235	127	13	-17.9375
1080	115	12	-29.9375
845	127	7	-17.9375
1522	150	9	5.0625
1047	156	6	11.0625

h) Subset Worksheet

Use this to copy specified rows from the active worksheet to a new worksheet. Using the Auction Data as an example, let's say that you only wanted to look at auction prices that were over $\$ 1000$.

Data \rightarrow Subset Worksheet \rightarrow

In this example, Double-click on Auc Price so that it is listed under 'Condition' and then use the buttons to type $>1000 \rightarrow \mathbf{O K} \rightarrow \mathbf{O K}$.

This new worksheet will appear:

Worksheet 1 ***]				
Fime Edit Data Galc Stat Graph Editor Iools Windo				
\downarrow	C1	C2	C3	C4
	Auc Price	Age	No. of Bidders	
1	1235	127	13	
2	1080	115	12	
3	1522	150	9	
4	1047	156	6	
5	1979	182	11	
6	1822	156	12	
7	1253	132	10	
8	1297	137	9	
9	1713	137	15	
10	1024	117	11	
11	1147	137	8	
12	1092	153	6	
13	1152	117	13	
14	1336	126	10	
15	2131	170	14	
16	1550	182	8	
17	1884	162	11	
18	2041	184	10	
19	1483	159	9	
20	1055	108	14	
21	1545	175	8	
22	1792	179	9	
23	1175	111	15	
24	1593	187	8	
25	1356	194	5	
26	1262	168	7	

i) Split Worksheet

Using the Student Data, let's say we wanted to split the worksheets into two worksheets: one with the 'Male' data and one with the 'Female' data.

Data \rightarrow Split Worksheet \rightarrow

Put cursor in 'By variables' box and Double-click on appropriate variable $\rightarrow \mathbf{O K}$.
Two new worksheets will appear:

j) Merge Worksheet

Use to combine two open worksheets into one new worksheet. For this example, we'll undo what was just shown above (i.e., the gender split example) and merge the two new worksheets we just created.

Data \rightarrow Merge Worksheet \rightarrow

Click the appropriate worksheet to merge $\rightarrow \mathbf{O K}$.

The new merged worksheet will appear:

${ }^{[1 /}$ Merge Worksheet $\#+$						
\downarrow	C1-T	C2-T	C3	C4-T	C5-T	C6
	Gender:Worksheet 1/G	Portfolio:Worksheet 1/G	Age:Worksheet 1/Gend	Gender:Worksheet 1/G	Portfolio:Worksheet 1/G	Age:Worksheet 1(Gend
1	Female	Marketing	25	Male	Finance	29
2	Female	Marketing	25	Male	IST	33
3	Female	Consulting	29	Male	Finance	29
4	Female	Marketing	29	Male	Finance	35
5	Female	Finance	32	Male	Consulting	25
6				Male	Consulting	27
7				Male	Operations	27
8				Male	Operations	33
9				Male	Marketing	38
10				Male	Marketing	28
11				Male	Marketing	28
12				Male	IST	24
13				Male	Finance	25
14				Male	Consulting	24

If you click on the By Columns... button, you can customize how the worksheets merge. By Columns options allow you to match observations from the two worksheets to be merged. For example, let's say that two samples of students were taken. Each sample contains one student from each of five groups. Here are the two samples:

Sample 1

Group	Gender	Portfolio	Age
1	Male	Finance	29
2	Male	IST	33
3	Male	Finance	29
4	Female	Marketing	25
5	Male	Finance	35

Sample 2

Group	Gender	Portfolio	Age
5	Male	Operations	33
4	Male	Operations	27
3	Female	Marketing	25
2	Male	Consulting	27
1	Male	Consulting	25

Let's say you would like to combine the results into one worksheet so that all the information for each group is in the same row.

Data \rightarrow Merge Worksheet \rightarrow

Click on By Columns...

Move appropriate variables from the left to the right by clicking on them and then hitting $>$ (Here we clicked on Group and moved it over to the By columns: box) $\rightarrow \mathbf{O K} \rightarrow \mathbf{O K}$.

The new merged worksheet will appear:

3 Merge Worksheet *t*								
\downarrow	C1	C2-T	C3-T	C4	C5	C6-T	C7-T	C8
	Group:Worksheet 2	Gender:Worksheet 2	Portfolio:Worksheet 2	Age:Worksheet 2	Group:Worksheet 1	Gender:Worksheet 1	Portfolio:Worksheet 1	Age:Worksheet 1
1	1	Male	Consulting	25	1	Male	Finance	29
2	2	Male	Consulting	27	2	Male	IST	33
3	3	Female	Marketing	25	3	Male	Finance	29
4	4	Male	Operations	27	4	Female	Marketing	25
5	5	Male	Operations	33	5	Male	Finance	35
6								

k) Deleting Observations with Missing Data

Minitab replaces a missing data point with an asterisk (*). If you want to eliminate all observations with missing data points, here is one way to do it - there may be other ways. Let's say that the Auction Data was missing some data points and looked like this:

MinITAB - Untitled - [Worksheet 1 \#-]				
罤 Eile Edit Data Calc stat Graph Editor Iools				
\downarrow	C1	C2	C3	C
	Auc Price	Age	No. of Bidders	
1	1235	127	13	
2	1080	*	12	
3	845	127	7	
4	1522	150	*	
5	1047	156	6	
6	*	182	11	
7	1822	156	12	
8	1253	132	10	
9	1297	137	9	
10	946	113	9	
11	1713	137	15	
12	1024	117	11	
13	1147	*	8	
14	1092	153	6	
15	1152	117	13	
16	1336	126	10	
17	2131	170	14	
18	1550	182	8	
19	1884	162	*	
20	2041	184	10	
21	845	143	6	
22	1483	159	9	
23	*	108	14	
24	1545	175	8	
25	729	108	6	
26	1792	179	9	
27	1175	111	15	
28	1593	187	*	
29	785	111	7	
30	744	115	7	
31	1356	194	5	
32	1262	168	7	
33				

It is easy to see which observations have missing data here, but it would be more difficult if the sample size was larger. So we are going to Sort each column so that the asterisks are at the top of the columns, and then delete those rows.

Data \rightarrow Sort \rightarrow Double-click on all variables for Sort columns \rightarrow Double-click on the first variable for By column (Auc Price in this example) \rightarrow Click on box next to Descending \rightarrow Click on appropriate selection under Store sorted data in $\rightarrow \mathbf{O K}$.

The new worksheet will appear:

- MINITAB - Untitled - [Sort by Auc Price ***]				
湘 Eile Edit Data Galc stat Graph Editor Iools				
\downarrow	C1	C2	C3	C 2
	Auc Price	Age	No. of Bidders	
1		182	11	
2	*	108	14	
3	2131	170	14	
4	2041	184	10	
5	1884	162	*	
6	1822	156	12	
7	1792	179	9	
8	1713	137	15	
9	1593	187	*	
10	1550	182	8	
11	1545	175	8	
12	1522	150	*	
13	1483	159	9	
14	1356	194	5	
15	1336	126	10	
16	1297	137	9	
17	1262	168	7	
18	1253	132	10	
19	1235	127	13	
20	1175	111	15	
21	1152	117	13	
22	1147	*	8	
23	1092	153	6	
24	1080	*	12	
25	1047	156	6	
26	1024	117	11	
27	946	113	9	
28	845	127	7	
29	845	143	6	
30	785	111	7	
31	744	115	7	
32	729	108	6	
33				

Highlight the rows with the asterisks \rightarrow Right-click and a list will appear so that you can click on Delete Cells (Or you can go to Edit \rightarrow Delete Cells). Then those rows will disappear. Now we will follow the same procedure the rest of the columns.

Data \rightarrow Sort \rightarrow Double-click on all variables for Sort columns \rightarrow Double-click on the second variable for By column (Age in this example) \rightarrow Click on box next to Descending \rightarrow Click on appropriate selection under Store sorted data in $\rightarrow \mathbf{O K}$.

The new worksheet will appear:

EMINITAB - Untitled - [Sort by Age ***]				
䦕 Eile Edit Data Galc stat Graph Editor Iools				
\downarrow	C1	C2	C3	C
	Auc Price	Age	No. of Bidders	
1	1147	*	8	
2	1080	*	12	
3	1356	194	5	
4	1593	187	*	
5	2041	184	10	
6	1550	182	8	
7	1792	179	9	
8	1545	175	8	
9	2131	170	14	
10	1262	168	7	
11	1884	162	*	
12	1483	159	9	
13	1822	156	12	
14	1047	156	6	
15	1092	153	6	
16	1522	150	*	
17	845	143	6	
18	1713	137	15	
19	1297	137	9	
20	1253	132	10	
21	1235	127	13	
22	845	127	7	
23	1336	126	10	
24	1152	117	13	
25	1024	117	11	
26	744	115	7	
27	946	113	9	
28	1175	111	15	
29	785	111	7	
30	729	108	6	

Highlight the rows with the asterisks \rightarrow Right-click and a list will appear so that you can click on Delete Cells (Or you can go to Edit \rightarrow Delete Cells). Then those rows will disappear.

Data \rightarrow Sort \rightarrow Double-click on all variables for Sort columns \rightarrow Double-click on the third variable for By column (No. of Bidders in this example) \rightarrow Click on box next to Descending \rightarrow Click on appropriate selection under Store sorted data in \rightarrow OK.

The new worksheet will appear:

EMINITAB - Untitled - [Sort by No. of Bidders				
鴫 Eile Edit Data Galc stat Graph Editor Iools				
\downarrow	C1	C2	C3	C
	Auc Price	Age	No. of Bidders	
1	1593	187	*	
2	1884	162	*	
3	1522	150	*	
4	1713	137	15	
5	1175	111	15	
6	2131	170	14	
7	1235	127	13	
8	1152	117	13	
9	1822	156	12	
10	1024	117	11	
11	2041	184	10	
12	1253	132	10	
13	1336	126	10	
14	1792	179	9	
15	1483	159	9	
16	1297	137	9	
17	946	113	9	
18	1550	182	8	
19	1545	175	8	
20	1262	168	7	
21	845	127	7	
22	744	115	7	
23	785	111	7	
24	1047	156	6	
25	1092	153	6	
26	845	143	6	
27	729	108	6	
28	1356	194	5	
29				

Highlight the rows with the asterisks \rightarrow Right-click and a list will appear so that you can click on Delete Cells (Or you can go to Edit \rightarrow Delete Cells). Then those rows will disappear.

The newest worksheet does not contain any observations with missing data points.

E MINITAB - Untitled - [Sort by No. of Bidders				
浉 Eile Edit Data Calc stat Graph Editor Iools				
\downarrow	C1	C2	C3	C 2
	Auc Price	Age	No. of Bidders	
1	1713	137	15	
2	1175	111	15	
3	2131	170	14	
4	1235	127	13	
5	1152	117	13	
6	1822	156	12	
7	1024	117	11	
8	2041	184	10	
9	1253	132	10	
10	1336	126	10	
11	1792	179	9	
12	1483	159	9	
13	1297	137	9	
14	946	113	9	
15	1550	182	8	
16	1545	175	8	
17	1262	168	7	
18	845	127	7	
19	744	115	7	
20	785	111	7	
21	1047	156	6	
22	1092	153	6	
23	845	143	6	
24	729	108	6	
25	1356	194	5	
26				

III. Descriptive Statistics

Displays N, N*, Mean, SE Mean, StDev, Min, Q1, Median, Q3, and Max
a) Descriptive Statistics for one variable

Stat \rightarrow Basic Statistics \rightarrow Display Descriptive Statistics \rightarrow Double-click on appropriate variable (For Dell Data, double-click on Rates of Return so that it is displayed under Variables).

As you can see from the screen above, you are given the option to alter the output by clicking on the buttons. If you click on the Statistics button, this screen will appear:

The checked items will be displayed in the output. To check or uncheck an item, click in the box to the left of the word.

If you click on the Graphs button, this screen will appear:

To display any of these graphs (in addition the descriptive statistics displayed in the session window), click in the box. (For purposes of this example, I have not clicked on any graphs since graphs will be explained in the next section.)

To display the data, click on OK. For the Dell example, this information is displayed in the session window:

Descriptive Statistics: Rates of Return

Variable	N	N^{*}	Mean	SE Mean	StDev	Minimum	Q1	Median
Rates of Return	60	0	0.0907	0.0195	0.1511	-0.2175	-0.0304	0.0784
Variable		Maximum						

b) Descriptive statistics for one variable, grouped by a second variable

Stat \rightarrow Basic Statistics \rightarrow Display Descriptive Statistics \rightarrow Double-click on appropriate variable \rightarrow Click in By variables (optional) box and then double-click on appropriate variable \rightarrow OK. (For Auction Data, double-click on Auction Price so that it is displayed under Variables. Then move the cursor into the By variables (optional) box and double-click on No. of bidders so that it is displayed under By variables (optional).)

For the Auction Data example, this information is displayed in the session window:
Descriptive Statistics: Auc Price

	No. of								
Bidders	N	N^{*}	Mean	SE Mean	StDev	Minimum	Q1	Median	
Variable	Bidd								
Auc Price	5	1	0	1356.0	$*$	$*$	1356.0	$*$	1356.0
	6	4	0	928.3	85.4	170.8	729.0	758.0	946.0
	7	4	0	909	119	239	744	754	815
	8	4	0	1459	104	209	1147	1247	1548
	9	5	0	1408	140	313	946	1122	1483
	10	3	0	1543	250	433	1253	1253	1336
	11	3	0	1629	304	526	1024	1024	1884
	12	2	0	1451	371	525	1080	$*$	1451
	13	2	0	1193.5	41.5	58.7	1152.0	$*$	1193.5
	14	2	0	1593	538	761	1055	$*$	1593
	15	2	0	1444	269	380	1175	$*$	1444

	No. of		
Variable	Qidders	Q3	Maximum
Auc Price	5	$*$	1356.0
	6	1080.8	1092.0
	7	1158	1262
	8	1582	1593
	9	1657	1792
	10	2041	2041
11	1979	1979	
12	$*$	1822	
13	$*$	1235.0	
14	$*$	2131	
15		1713	

Note: If you see a * in the output, that indicates that the value could not be calculated. In this example, the numerous * appear because N is not large enough in each group to calculate all the descriptive statistics. (e.g. There is only one instance where the number of bidders equals 5 , and thus SE Mean, StDev, Q1, and Q3 could not be calculated with only one data point)

c) Store Descriptive Statistics

This feature adds the descriptive statistics to the data worksheet instead of displaying the output in the session window:

Stat \rightarrow Basic Statistics \rightarrow Store Descriptive Statistics \rightarrow Double-click on appropriate variable (For Dell Data, double-click on Rates of Return so that it is displayed under Variables).

As you can see from the screen above, you are again given the option to alter the output by clicking on the buttons. If you click on the Statistics button, this screen will appear:

If you click on Options button, this screen will appear:

Since this box is not checked in this example, Minitab stores the requested statistics at the top of the worksheet only, by default.

To display the data, click on OK. For the Dell example, here are the first five rows of data displayed in the worksheet:

Date	Rates of Return	Mean1	StDev1	Minimum1	Maximum1	N1
31-Jan-94	-0.0276	0.0907033	0.151094	-0.2175	0.4561	60
28-Feb-94	0.1364					
31-Mar-94	0.01					
29-Apr-94	-0.1287					
31-May-94	0.3011					

d) Column Statistics

You can calculate various statistics on columns. Column statistics are displayed in the Session window, and are optionally stored in a constant.

Calc \rightarrow Column Statistics \rightarrow Click by the Statistic you want calculated (For Auction Data, click by Standard Deviation) \rightarrow Double-click on appropriate column in Input variable box (Double-click on No. of Bidders) \rightarrow OK.

This output is displayed in the session window:
Standard Deviation of No. of Bidders
Standard deviation of No. of Bidders $=2.83963$

e) Row Statistics

You can compute one value for each row in a set of columns. The statistic is calculated across the rows of the column(s) specified and the answers are stored in the corresponding rows of a new column.

Calc \rightarrow Row Statistics \rightarrow Click by the Statistic you want calculated \rightarrow Double-click on appropriate variable(s) in Input variables box \rightarrow Type the name of the new column that will be created \rightarrow OK.

Calculating Row Statistics does not make sense using the example data because it is not meaningful in context. Thus, an example is not given here. However, in order to see what row statistics are able to be calculated, the screen shot is shown below.

IV. Graphs

a) Histogram

Using the Dell Data that is now inserted into Minitab, a histogram can be made by going to Graph \rightarrow Histogram \rightarrow Then this screen will appear:

Click on appropriate graph and then click OK. (For this example, we will display the simple histogram). \rightarrow Double-click on appropriate variable (For Dell Data, double-click on Rates of Return so that it is displayed under Graph Variables) $\rightarrow \mathbf{O K}$.

This histogram will display:

Note: You are able to edit the graph at this point. On the graph below, the arrows represent where you can double-click to make changes to the graph. You can do this type of editing on most graphs.

Let's say you wanted to edit the scale on the x-axis. By double-clicking on any of the x -axis numbers (For this Dell example, you could double-click on -0.16), this screen will then appear:

Use to specify the range of the scale, the number of major and minor ticks, and their placement.

This screen shows the Scale tab. Another way to edit the scale is to click on the Binning tab. By doing so, this screen will appear:

(The default sets the Interval Definition to Automatic. However, for this Dell example, click by Midpoint/Cutpoint positions and replace the numbers given with the new numbers shown above.)

If you click on the Show tab, this screen will appear:

Use to show or hide axis lines, ticks, and labels.

If you click on the Attributes tab, this screen will appear:

Use to change the type, color, and size of the axis line, as well as the tick orientation and length.

If you click on the Labels tab, this screen will appear:

If you click on the Font tab, this screen will appear:

(The default is set to Tahoma Font, Size 10. For this example, choose Lucida Handwriting Font, Size 12.)

If you click on the Alignment tab, this screen will appear:

Use to change the angle of the tick labels to improve legibility.

If you click on OK, the new histogram will display:

As you can see, the binning, size, and font have been changed in this example. Since we originally double-clicked on one of the x -axis numbers, we were able to make changes regarding that aspect of the graph. Likewise, you can make changes to other parts of the graph by double-
clicking on the appropriate spot. The details for all the other arrows (displayed on page 26) are not going to be explained here. Basically, you can change the way the text, bars, and background are displayed.

Another way to alter graphs is to use the buttons. If we go back to our original histogram example, after going to Graph \rightarrow Histogram \rightarrow OK \rightarrow Double-clicking on appropriate variable, we are back to this screen:

Here you are given the option to alter the output by clicking on the buttons. If you click on the Scale button, this screen will appear:

Use to specify which scale elements to display and where to display them.

This screen shows the Axes and Ticks tab. If you click on the Y-Scale Type tab, this screen will appear:

(The default is set for Percent, but for this Dell example, click by Frequency.)
If you click on the Gridlines tab, this screen will appear:

Use to display gridlines at the major and minor tick positions. If you choose gridlines at the minor tick positions, gridlines are also drawn at the major tick positions.
(None of the boxes are checked by default, but for this example, click by Y major ticks.)

If you click on the Reference Lines tab, this screen will appear:

Use to display reference lines.
(There are no references lines by default, but for this example, type 6 to show a reference line at $\mathrm{y}=6$.)

If you click on the Labels button, this screen will appear:

Use to display titles and footnotes.

This screen shows the Titles/Footnotes tab. If you click on the Data Labels tab, this screen will appear:

Use to label each data point.
(The default is set for None, but click by Use y-value labels for this example.)
If you click on the Data View button, this screen will appear:

Use to represent the data with one or more data display types, including bars, symbols, project lines, and areas.

This screen shows the Data Display tab. If you click on the Distribution tab, this screen will appear:

Use to fit a distribution to your histogram data to help you determine whether the data can be adequately modeled by the selected distribution.

If you click on the Smoother tab, this screen will appear:

Use to fit a lowess smoother. The lowess routine fits a smoothed line to the data.

If you click on the Multiple Graphs button, this screen will appear:

Controls the placement and scales of multiple graphs created in the same graph dialog box.

This screen shows the Multiple Variables tab. If you click on the By Variables tab, this screen will appear:

Creates multiple graphs based on a type of grouping variable called a By variable, which divides the data into distinct graphs, either in separate panels or on separate pages. Separating a graph into panels is useful when the number of groups would make an overlaid graph difficult to read.

If you click on the Data Options button, this screen will appear:

Subset |Group Options| Frequency|
-Include or Exclude

- Specify which rows to include

C Specify which rows to exclude

Specify Which Rows To Include

- All rows
C Rows that match

C Brushedrows
\bigcirc Row numbers:
\square Cancel

Use to include or exclude rows when creating a graph.

This screen shows the Subset tab. If you click on the Group Options tab, this screen will appear:

Use to include or exclude unrepresented groups and observations with missing group values when creating a graph.

If you click on the Frequency tab, this screen will appear:

Use to include a frequency column. You can designate a different frequency column for each graph created in the graph dialog box.
(Frequency column: You can list each observation once and use a frequency column to record the number of instances of each.)

To display the graph, click on OK. The histogram will display:

b) Dotplot

Graph \rightarrow Dotplot \rightarrow Then this screen will appear:

Click on appropriate graph and then click OK. (For this example, we will display the simple dotplot). \rightarrow Double-click on appropriate variable (For Dell Data, double-click on Rates of Return so that it is displayed under Graph Variables) $\rightarrow \mathbf{O K}$.

This Dotplot will display:

c) Box-and-Whisker Plot (Boxplot)

Graph \rightarrow Boxplot \rightarrow Then this screen will appear:

Click on appropriate graph and then click OK. (For this example, we will display the simple boxplot). \rightarrow Double-click on appropriate variable (For Dell Data, double-click on Rates of Return so that it is displayed under Graph Variables) $\rightarrow \mathbf{O K}$.

This Box-and-Whisker Plot (Boxplot) will display:

d) Probability Plot

Graph \rightarrow Probability Plot \rightarrow This screen will appear:

Click on appropriate graph and then click OK. (For this example, we will display the single probability plot). \rightarrow Double-click on appropriate variable (For Dell Data, double-click on Rates of Return so that it is displayed under Graph Variables) $\rightarrow \mathbf{O K}$.

This Probability Plot will display:

e) Graphical Summary

Stat \rightarrow Basic Statistics \rightarrow Graphical Summary \rightarrow Double-click on appropriate variable (For Dell Data, double-click on Rates of Return so that it is displayed under Variables) $\rightarrow \mathbf{O K}$.

This graphical summary will display:

Note: The By variables option is used to create multiple graphical summaries based on a type of grouping variables, called a by variable. For an example using the Auction Data, if use Auc Price as the Variable and No. of Bidders as the By variable,

the output will display a graphical summary for every group of number of bidders. Here is one of the graphical summaries that is displayed:

Thus, only the auction prices for when the number of bidders $=9$ is shown.

f) Bar Chart

i) Bars representing counts of unique values

Choose this graphical format if you have one or more columns of categorical data and you want to chart the frequency of each category.

Graph \rightarrow Bar Chart \rightarrow Choose Counts of unique values from the drop box and Click OK. (For this example, we will use the Student Data and show a simple Bar Chart.)

Double-click on the appropriate variable (Here we'll choose Portfolio).

As you can see from the screen above, you are given the option to alter the output by clicking on the buttons. If you click on the Chart Options button, this screen will appear:

To display the bar chart, click on OK.

If we would have chosen Decreasing Y instead of Default after clicking on the Bar Chart Options button,

Then the bar chart would have looked like this:

ii) Bars representing a function of a variable

Choose if you have one or more columns of data and you want to chart a function of the data. Quite a few of these functions are summary statistics.

Graph \rightarrow Bar Chart \rightarrow Choose A function of a variable from the drop box (Then, for this example, we will click on Cluster under Multiple Y's) and Click OK.

Click on appropriate variable from the drop box to choose a function. (Here we'll choose mean)

Double-click on appropriate variable in Graph variables box and then double-click on appropriate variable in the Categorical variables for grouping box. (For Student Data, age
was put under the graph variable and gender and portfolio was put under the categorical variables.) \rightarrow OK.

The bar chart will display:

iii) Bars representing values from a table

Choose if you have one or more columns of summary data and you want to chart the summary value for each category.

Graph \rightarrow Bar Chart \rightarrow Choose Values from a table from the drop box (Then, for this example, we will click on Simple under One column of values) and Click OK.

Double-click on appropriate variable in Graph variables box and then double-click on appropriate variable in the Categorical variable. (For Student Data, age was put under the graph variable and gender was put under the categorical variable.) $\rightarrow \mathbf{O K}$.

The bar chart will display:

Although it does not provide much use in context to sum the ages of males versus females, this example was completed to showcase the use of this function.
g) Pie Chart
i) Chart raw data

Choose when each row in a column represents a single observation. Each slice in the pie is proportional to the number of occurrences of a value in the column.

Graph \rightarrow Pie Chart \rightarrow Click on Chart raw data \rightarrow Double-click on appropriate variable in Categorical variables box (For Student Data, double-click on Portfolio).

As you can see from the screen above, you are given the option to alter the output by clicking on the buttons. If you click on the Pie Options button, this screen will appear:

Use to specify the slice order, slice starting angle, and the minimum category size for separate slices.

To display the pie chart, click on OK.

ii) Chart values from a table

Choose when the category names are in one column and summary data are in another column.
Let's look at how to use a pie chart if our data was organized differently. (Look at Student (2) Data)

Graph \rightarrow Pie Chart \rightarrow Click on Chart values from a table \rightarrow Double-click on appropriate variable in Categorical variable box and double-click on appropriate variable in the Summary variables box. (For Student (2) Data, double-click Gender for Categorical variable and Count for Summary variables.)

To display the pie chart, click on OK.

V. Estimation and Testing

a) 1 Z

Use 1-Sample Z to compute a confidence interval or perform a hypothesis test of the mean when σ is known. For a two-tailed one-sample Z :
$H_{0}: \mu=\mu_{0}$ versus $H_{i}: \mu \neq \mu_{0}$
where μ is the population mean and μ_{0} is the hypothesized population mean.
Auction Price Example: Let's say that our null hypothesis is that the Mean Age equals 130 and that the alternative hypothesis is that the Mean Age does not equal 130.

Stat \rightarrow Basic Statistics \rightarrow 1-Sample $Z \rightarrow$ Double-click on appropriate variable (For this example, double-click on Age) \rightarrow Type in Standard deviation in appropriate box (Type 27.3955-Note: I used the Column Statistics function to get the standard deviation) \rightarrow Check Perform Hypothesis test \rightarrow Type in Hypothesized mean (Type 130).

If you click on the Graphs button, this screen will appear:

You can display the listed graphs. The graphs show the sample mean and a confidence interval for the mean. When you do a hypothesis test, the graphs also show the null hypothesis test value.

If you click on the Options button, this screen will appear:

Click OK to see this output display in the session window:

One-Sample Z: Age

Test of $\mathrm{mu}=130 \mathrm{vs}$ not $=130$
The assumed standard deviation $=27.3955$

Variable	N	Mean	StDev	SE Mean	$95 \% \mathrm{CI}$	Z	P
Age	32	144.938	27.395	4.843	$(135.446$,	$154.429)$	3.08

Looking at the Confidence Interval, Z value, or P value, we know that we can reject the null hypothesis for our example.
b) $1 t$

Performs a one sample t -test or t -confidence interval for the mean.
Use 1-Sample t to compute a confidence interval and perform a hypothesis test of the mean when the population standard deviation, σ, is unknown. For a two-tailed one-sample t :
$H_{0}: \mu=\mu_{0}$ versus $H_{1}: \mu \neq \mu_{0}$
where μ is the population mean and μ_{0} is the hypothesized population mean.

Another example using Auction Data: Let's say that our null hypothesis is that the Number of Bidders equals 9 and the alternative hypothesis is that the Number of Bidders does not equal 9 .

Stat \rightarrow Basic Statistics \rightarrow 1-Sample $t \rightarrow$ Double-click on appropriate variable (For this example, double-click on No. of Bidders) \rightarrow Check Perform hypothesis test \rightarrow Type in Hypothesized mean (Type 9) \rightarrow OK.

This output is displayed in the session window:
One-Sample T: No. of Bidders

```
Test of mu = 9 vs not = 9
```

| Variable | N | Mean | StDev | SE Mean | 95% CI | P | P |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| No. of Bidders | 32 | 9.53125 | 2.83963 | 0.50198 | $(8.50745,10.55505)$ | 1.06 | 0.298 |

Looking at the Confidence Interval, Z value, or P value, we know that we cannot reject the null hypothesis in this example.

You can perform an independent two-sample t-test and generate a confidence interval.
Use 2-Sample t to perform a hypothesis test and compute a confidence interval of the difference between two population means when the population standard deviations, σ 's, are unknown. For a two-tailed two-sample t:
$H_{0}: \mu_{1}-\mu_{2}=\delta_{0} \quad$ versus $H_{1}: \mu_{1}-\mu_{2} \neq \delta_{0}$
where μ_{1} and μ_{2} are the population means and δ_{0} is the hypothesized difference between the two population means.

Student Data Example: Let's say that our null hypothesis is that the Mean Age of Females minus the Mean Age of Males is zero and the alternative hypothesis is that it doesn't equal zero.

Stat $\boldsymbol{\rightarrow}$ Basic Statistics \rightarrow 2-Sample $\mathbf{t} \rightarrow$ Click by appropriate button (For Student Data, click by Samples in one column) \rightarrow Double-click on appropriate variables (Double-click on Age so it is displayed by Samples, and double-click on Gender so it is displayed by Subscripts).

If you click on the Graphs button, this screen will appear:

-Displays an individual value plot and a boxplot of the variables. The graphs also display the sample means.

If you click on the Options button, this screen will appear:

Choose desired confidence level.

Enter the null hypothesis value, which is the hypothesized difference in population means.

Choose whether you wan to do a one or two-tailed test.

Click OK to see this output display in the session window:

Two-Sample T-Test and CI: Age, Gender

Two-sample T for Age

Gender	N	Mean	StDev	SE Mean
Female	5	28.00	3.00	1.3
Male	14	28.93	4.30	1.2

Difference = mu (Female) - mu (Male)
Estimate for difference: -0.928571
95\% CI for difference: (-4.866635, 3.009492)
T -Test of difference $=0(\mathrm{vs}$ not $=$) : T -Value $=-0.53 \mathrm{P}$-Value $=0.611 \quad \mathrm{DF}=10$
Looking at the Confidence Interval, T value, or P value, we know that we cannot reject the null hypothesis.
d) $1 P$

Use to perform a test of one binomial (two categories) proportion.
Use 1 Proportion to compute a confidence interval and perform a hypothesis test of the proportion.:
$\mathrm{H}_{0}: \mathrm{p}=\mathrm{p}_{0}$ versus $\mathrm{H}_{\mathrm{a}}: \mathrm{p} \neq \mathrm{p}_{0}$ where p is the population proportion and p_{0} is the hypothesized value.

Another Student Data Example: Let's say that our null hypothesis is that the proportion of Male students equals .5 and the alternative hypothesis is that the proportion of Male students does not equal .5 .

Stat \rightarrow Basic Statistics $\rightarrow 1$ Proportion \rightarrow Double click on appropriate variable (For Student Data, double-click on Gender.) \rightarrow Check Perform hypothesis test \rightarrow Type in Hypothesized proportion (Type 0.5) $\rightarrow \mathbf{O K}$

If you click on the Options button, this screen will appear:

Click OK to see this output display in the session window:

Test and Cl for One Proportion: Gender

```
Test of p = 0.5 vs p not = 0.5
Event = Male
```

					Exact
Variable	X	N	Sample p	95% CI	P-Value
Gender	14	19	0.736842	$(0.487971,0.908534)$	0.064

Looking at the Confidence Interval or P value, we know that we cannot reject the null hypothesis. (Note: The range of the confidence interval is relatively large because the sample size is small.)
e) $2 P$

Use to perform a test of two binomial proportions.
Use the 2 Proportions command to compute a confidence interval and perform a hypothesis test of the difference between two proportions. For a two-tailed test of two proportions:
$\mathrm{H}_{0}: \mathrm{p}_{1}-\mathrm{p}_{2}=\mathrm{p}_{0}$ versus $\mathrm{H}_{1}: \mathrm{p}_{1}-\mathrm{p}_{2} \neq \mathrm{p}_{0}$
where p_{1} and p_{2} are the proportions of success in populations 1 and 2 , respectively, and p_{0} is the hypothesized difference between the two proportions.

Another Student Data Example: Let's say that our null hypothesis is that the proportion of Male students with a portfolio in Consulting minus the proportion of Female students with a portfolio in Consulting equals zero, and the alternative hypothesis is that it doesn't equal zero.

Stat \rightarrow Basic Statistics $\rightarrow 2$ Proportions \rightarrow Click by appropriate button (For Student Data, click by Summarized data) \rightarrow Double-click on appropriate variables or type in appropriate numbers (Type in $14,3,5,1$) $\rightarrow \mathbf{O K}$.

Since we don't have two columns where each cell of these columns is one of two possible values, we need to enter raw data into single columns for each sample. You can look at the sample data to get the information. Our data shows up that 3 out of 14 Males have a Consulting portfolio, and 1 out of 5 Females have a Consulting portfolio.

This output will be displayed in the session window:

Test and Cl for Two Proportions

```
\begin{tabular}{lrrr} 
Sample & X & N & Sample p \\
1 & 3 & 14 & 0.214286 \\
2 & 1 & 5 & 0.200000
\end{tabular}
Difference = p (1) - p (2)
Estimate for difference: 0.0142857
95% CI for difference: (-0.396962, 0.425534)
Test for difference = 0 (vs not = 0): Z = 0.07 P-Value = 0.946
Fisher's exact test: P-Value = 1.000
* NOTE * The normal approximation may be inaccurate for small samples.
```

Looking at the Confidence Interval or P value, we know that we cannot reject the null hypothesis.

f) Normality Test

This function generates a normal probability plot and performs a hypothesis test to examine whether or not the observations follow a normal distribution. For the normality test, the hypotheses are:
H_{0} : data follow a normal distribution vs. H_{a} : data do not follow a normal distribution
Stat \rightarrow Basic Statistics \rightarrow Normality Test \rightarrow Double-click on appropriate variable (For Auction Data, double-click on Auc Price) \rightarrow OK.

This graph displays:

Interpreting the Results

The graphical output is a plot of normal probabilities versus the data. The Anderson-Darling test's p-value indicates that, at α levels greater than 0.391 , there is evidence that the data do not follow a normal distribution. Thus, if $\alpha=.01, .05$, or .10 as it typically is, we could not reject the null hypothesis in this example.

VI. Regression

a) Finding the Best Regression Model Using All Independent Variables

Stat \rightarrow Regression \rightarrow Regression \rightarrow Double-click on dependent variable, then double-click on all independent variables (For The Auction Data, double-click on Auc Price so that it is displayed under Response, and then double-click on Age and No. of Bidders so that they are displayed under Predictors).

As you can see from the screen above, you are given the option to alter the output by clicking on the buttons. If you click on the Graphs button, this screen will appear:

The output in the session window is shown:

Regression Analysis: Auc Price versus Age, No. of Bidders

Auc Price $=-1339+12.7$ Age + 86.0 No. of Bidders								
Predictor		Coef	SE	Coef		T	P	
Constant	-13	39.0		73.8	-7.70	700.0		
Age	12.	7406		. 9047	14.08	080.0		
No. of Bidders		. 953		. 729	9.85	850.0		
$\mathrm{S}=133.485 \quad \mathrm{R}$	R-Sq	$=89$.		$\mathrm{R}-\mathrm{Sq}$	(adj)	$)=88$		
Analysis of Variance								
Source	DF		SS		MS	F		P
Regression	2	4283	063	2141	531	120.19		. 000
Residual Error	29	516	727		818			
Total	31	4799	790					
Source	DF	Seq	SS					
Age	1	2555	224					
No. of Bidders	1	1727	838					

In addition, the following graphs will display:

Residuals Versus Age

(response is Auc Price)

Residuals Versus No. of Bidders
(response is Auc Price)

If you click on the Options button, this screen will appear:

Click appropriate boxes and input appropriate data (as instructed above) \rightarrow (For Auction data, 15010 was entered under Prediction intervals for new observations in order to see what the
predicted auction price would be for a clock that is 150 years old, when there are 10 bidders) \rightarrow OK.

Because of the data entered in the Prediction intervals for new observations box, this additional output will be displayed in the session window.

```
Predicted Values for New Observations
\begin{tabular}{rrrcc} 
New & & & & \\
Obs & Fit & SE Fit & \(95 \%\) CI & \(95 \% ~ P I ~\) \\
1 & 1431.7 & 24.6 & \((1381.4,1481.9)\) & \((1154.1, ~ 1709.3)\)
\end{tabular}
Values of Predictors for New Observations
\begin{tabular}{rrr} 
New & & No. of \\
Obs & Age & Bidders \\
1 & 150 & 10.0
\end{tabular}
```

If you click on the Results button, this screen will appear:

Click OK to see the output in the session window:

b) Identifying Relevant Independent Variables for Best Regression Model

Follow these procedures in order to determine which independent variables are included in the best regression model:

Stat \rightarrow Regression \rightarrow Best Subsets \rightarrow Double-click on dependent variable, then doubleclick on all independent variables (For The Auction Data, double-click on Auc Price so that it is displayed under Response, and then double-click on Age and No. of Bidders so that they are displayed under Free Predictors).

If you click on the Options button, this screen will appear:

This output appears in the session window:

Best Subsets Regression: Auc Price versus Age, No. of Bidders

Interpreting the Output: To identify which independent variables are included in the best regression model, first find the highest number under the $\mathrm{R}-\mathrm{Sq}(\mathrm{adj})$ column and follow the row across. There will be an ' X ' in an independent variable column if that variable is included in the best regression model.
(Thus for this example, the best regression model has an adjusted R-squared of 88.5% and both independent variables (Age and No. of Bidders) are included in the model.)
c) Correlation

To get the coefficient of correlation, go to Stat \rightarrow Basic Statistics \rightarrow Correlation \rightarrow Doubleclick on appropriate variables (For the Auction Data, click on all variables to get every correlation coefficient) $\rightarrow \mathbf{O K}$.

If Display p-values is unchecked, this output will be displayed:
Correlations: Auc Price, Age, No. of Bidders

	Auc Price	Age
Age	0.730	
No. of Bidde	0.395	-0.254
Cell Contents: Pearson correlation		

If Display p-values is checked, this output will be displayed:
Correlations: Auc Price, Age, No. of Bidders

	Auc Price	Age
Age	0.730	
	0.000	
No. of Bidde	0.395	-0.254
	0.025	0.161

[^1]d) Scatterplot

Graph $\boldsymbol{\rightarrow}$ Scatterplot $\boldsymbol{\rightarrow}$ This screen will appear:

Double-click on appropriate variables for the \mathbf{x} - and \mathbf{y} - axes (For Auction Data, double-click on Auction Price for the y variable and Age for the x variable) $\rightarrow \mathbf{O K}$.

If you click on the Data View button, this screen will appear:

Use to represent the data with one or more data display types, including symbols, connect lines, project lines, and areas.

This screen shows the Data Display tab. If you click on the Regression tab, this screen will appear:

Use to fit a least squares regression line to the scatterplot. Use the regression fit to examine the relationship between the dependent variable (y) and the independent variable (x). If you hover the mouse pointer over the fitted line, Minitab displays the fitted regression equation.

This scatterplot will display:

If we would have chosen With Regression instead of Simple,

This scatterplot would have displayed:

If we would have chosen With Connect Line,

This scatterplot would have displayed:

VII. Appendix

Note: You can copy and paste the data from the Appendix into Minitab if desired.

a) Dell Data

Here are the monthly returns for a share of stock for Dell during the period January 1994 through December 1998.

Monthly Rate of Return $=\{[$ Beginning of Month Price $]+[$ Dividend Per Share $]\} /[$ Beginning of Month Price]

All share prices and dividends are adjusted for stock splits.

Date	Rates of Return			
31-Jan-94	-0.0276		31-Jul-96	0.0909
28-Feb-94	0.1364		30-Aug-96	0.2095
31-Mar-94	0.01		30-Sep-96	0.1583
29-Apr-94	-0.1287		31-Oct-96	0.0466
31-May-94	0.3011		29-Nov-96	0.2488
30-Jun-94	-0.0786		31-Dec-96	0.0455
29-Jul-94	0.0616		31-Jan-97	0.2447
31-Aug-94	0.1607		28-Feb-97	0.0756
30-Sep-94	0.1519		31-Mar-97	-0.0492
31-Oct-94	0.1886		30-Apr-97	0.2375
30-Nov-94	-0.0323		30-May-97	0.3443
30-Dec-94	-0.0479		30-Jun-97	0.0439
31-Jan-95	0.0396		31-Jul-97	0.4561
28-Feb-95	-0.0264		29-Aug-97	-0.0402
31-Mar-95	0.0542		30-Sep-97	0.1805
28-Apr-95	0.2514		31-Oct-97	-0.1729
31-May-95	-0.0799		28-Nov-97	0.0507
30-Jun-95	0.1935		31-Dec-97	-0.0022
31-Jul-95	0.0811		30-Jan-98	0.1838
31-Aug-95	0.1846		27-Feb-98	0.4067
29-Sep-95	0.1039		31-Mar-98	-0.0313
31-Oct-95	0.0971		30-Apr-98	0.1919
30-Nov-95	-0.0509		29-May-98	0.0205
29-Dec-95	-0.2175		30-Jun-98	0.1263
31-Jan-96	-0.2094		31-Jul-98	0.17
29-Feb-96	0.2557		31-Aug-98	-0.0791
29-Mar-96	-0.0255		30-Sep-98	0.315
30-Apr-96	0.3694		30-Oct-98	-0.0038
31-May-96	0.2071		30-Nov-98	-0.0716
28-Jun-96	-0.0813		31-Dec-98	0.2035

b) Auction Data

A collector of antique grandfather clocks believes that the winning price of a clock at an auction is a positive function of the age of the clock. In addition, the collector also believes that the auction price is a positive function of the number of bidders. To test this theory, the collector collected a sample of data on the auction prices, ages, and number of bidders at the auction at which the grandfather clocks were sold.

Auc Price	Age	No. of Bidders
1235	127	13
1080	115	12
845	127	7
1522	150	9
1047	156	6
1979	182	11
1822	156	12
1253	132	10
1297	137	9
946	113	9
1713	137	15
1024	117	11
1147	137	8
1092	153	6
1152	117	13
1336	126	10
2131	170	14
1550	182	8
1884	162	11
2041	184	10
845	143	6
1483	159	9
1055	108	14
1545	175	8
729	108	6
1792	179	9
1175	111	15
1593	187	8
785	111	7
744	115	7
1356	194	5
1262	168	7

In order to have example data with categorical variables, this hypothetical sample of Carlson MBA students was used:

Gender	Portfolio	Age
Male	Finance	29
Male	IST	33
Male	Finance	29
Female	Marketing	25
Male	Finance	35
Male	Consulting	25
Male	Consulting	27
Female	Marketing	25
Male	Operations	27
Male	Operations	33
Male	Marketing	38
Male	Marketing	28
Female	Consulting	29
Male	Marketing	28
Male	IST	24
Male	Finance	25
Female	Marketing	29
Female	Finance	32
Male	Consulting	24
Student (2) Data		
d)		
Sender	Count	
Male	14	
Female	5	

[^0]: ${ }^{\text {i }}$ Describes Preview button.
 ${ }^{\text {ii }}$ Describes Description button.
 iii Describes Condition button.
 ${ }^{\text {iv }}$ Describes By Columns button.
 ${ }^{\mathrm{v}}$ Describes Statistics and Graphs buttons.
 ${ }^{\text {vi }}$ Describes Statistics and Options buttons.
 ${ }^{\text {vii }}$ Describes Scale, Labels, Data View, Multiple Graphs, and Data Options buttons. This section also shows you how to edit the graph after it is displayed.
 viii Describes the Bar Chart Options button.
 ${ }^{\text {ix }}$ Describes the Pie Chart Options button.
 ${ }^{x}$ Describes the Graphs and Options buttons.
 ${ }^{\text {xi }}$ Describes the Graphs and Options buttons.
 ${ }^{\text {xii }}$ Describes the Options button.
 ${ }^{\text {xiii }}$ Describes the Graphs, Options, and Results buttons.
 ${ }^{\text {xiv }}$ Describes the Options button.
 ${ }^{\text {xv }}$ Describes the Data View button.

[^1]: Cell Contents: Pearson correlation P-Value

